On Approximation Theory and Functional Equations*

R. C. BUCK

Department of Mathematics, University of Wisconsin, Madison, Wisconsin, 5370b Received September 24, 1970

DEDICATED TO PROFESSOR J. L. WALSH ON THE OCCASION OF HIS 75TH BIRTHDAY

1. INTRODUCTION

For the past decade, I have been interested in approximation properties of functions of several variables. The study of one special case has led to some unexpectedly interesting results. Let X and Y be compact spaces and let $S = X \times Y$. As usual, C[S] denotes the space of real-valued continuous functions on S with the uniform norm $||F|| = \max |F(x, y)|$, for $(x, y) \in S$. Let H be the set of functions in C[S] which can be expressed in the form f(x, y) = A(x) + B(y), where $A \in C[X]$ and $B \in C[Y]$. It is easily seen that H is a closed subspace of C[S]. Let K be a compact subset of S and $H_{|K}$ the set of restrictions to K of functions $f \in H$. Then, $H_{|K}$ is a subspace of C[K]. Our central problem is the study of the relationship between $H_{|K}$ and C[K].

The present paper, which is the first of a series, will show that for certain choices of K there is a close connection between the nature of $H_{|K}$ and the study of a special type of functional equations. We obtain necessary and sufficient conditions for $H_{|K}$ to coincide with or to be dense in C[K]. In the special case X = Y = [0, 1], certain choices for K will show that $H_{|K}$ need not be closed in C[K], and functions $F \in C[K]$ need not have best uniform approximations by $f \in H$. Some of the results dealing with functional equations are also new and have independent interest.

2. FUNCTIONAL EQUATIONS

Let k(x), $\beta(x)$ and u(x) belong to C[0, 1], with β taking values in [0, 1], and ask for a continuous function $\varphi \in C[0, 1]$ such that

$$\varphi(x) - k(x) \varphi(\beta(x)) = u(x) \tag{1}$$

* Research supported by NSF grant GP-9570.

© 1972 by Academic Press, Inc.

for all $x \in [0, 1]$. Many papers have dealt with this classical functional equation, mostly with severe restrictions on β and u. The easiest case to study is that where ||k|| < 1; for then one may apply the standard fixed point theorem for contraction mappings. The special case $k(x) \equiv 1$ is central to the general problem. (A summary of the literature is to be found in Kuczma [2, Chapters II, IV, V]. Our first results deal with generalizations of this equation.

Let α and β be continuous mappings from X into Y. Given any function $u \in C[X]$, we ask for a function $\varphi \in C[Y]$ such that

$$\varphi(\alpha(x)) - \varphi(\beta(x)) = u(x) \tag{2}$$

for all $x \in X$. Let Γ be the set of $x \in X$ for which $\alpha(x) = \beta(x)$. Clearly, (2) cannot have a solution unless u vanishes on Γ . We can then ask if any additional conditions on u are needed in order that there exists a solution for (2). We are also interested in the existence of approximate solutions of (2); given $\epsilon > 0$, is there a function $\varphi \in C[Y]$ such that

$$| \varphi(\alpha(x)) - \varphi(\beta(x)) - u(x) | < \epsilon$$

for all $x \in X$?

More generally, suppose that β_0 , β_1 ,..., β_n are mappings from X into Y, not necessarily one-to-one, and consider the system of simultaneous equations

$$\begin{aligned}
\varphi(\beta_0(x)) &- \varphi(\beta_1(x)) = u_1(x), \\
\varphi(\beta_1(x)) &- \varphi(\beta_2(x)) = u_2(x), \\
&\vdots \\
\varphi(\beta_{n-1}(x)) &- \varphi(\beta_n(x)) = u_n(x).
\end{aligned}$$
(3)

For any *i* and *j*, *i* < *j*, let Γ_{ij} be the set of all $x \in X$ with $\beta_i(x) = \beta_j(x)$. It is clear that Eqs. (3) cannot admit either an exact solution φ or arbitrarily good approximate solutions φ unless the given functions u_k obey the condition

$$u_k(x) = 0$$
 for all $x \in \Gamma_{k-1,k}$.

However, these are not the only requirements that must be imposed on the functions u_i . For example, if φ obeys the first two equations in (3), then it must also satisfy

$$\varphi(\beta_0(x)) - \varphi(\beta_2(x)) = u_1(x) + u_2(x),$$

so that it is necessary that $u_1(x) + u_2(x) = 0$ on the set Γ_{02} . In general, (3) can have no solution φ unless

$$u_k(x) + u_{k+1}(x) + \dots + u_m(x) = 0$$
 for $x \in \Gamma_{k-1,m}$, (4)

for $k = 1, 2, ..., n, m = 1, 2, ..., n, k \leq m$.

640/5/3-2

When X = Y = [0, 1], we can picture the β_i as a collection of curves in the unit square S, and the sets Γ_{ij} describe their intersection pattern. If there are multiple intersections, then the sets Γ_{ij} are not all disjoint.

In the next section, we obtain necessary and sufficient conditions for the system (3) to have a solution (or to have arbitrarily good approximate solutions) for every choice of the functions u_k obeying the set of conditions (4). In the following section, this will be applied in the case n = 1 (one equation and two curves) to illustrate some of the complexity of the situation.

3. The Main Theorem

Let K be the compact subset of S consisting of the graphs of the n + 1 curves (mappings) β_i .

THEOREM 1. The system of functional Eqs. (3) has a solution $\varphi \in C[Y]$ for every choice of the continuous functions u_k obeying conditions (4) if and only if $H_{|K} = C[K]$; (3) admits arbitrarily good approximate solutions if and only if $H_{|K}$ is dense in C[K].

Because of its interest, we also state the special case of Theorem 1 arising from n = 1.

THEOREM 2. Let K be the subset of S consisting of the graphs of the curves $y = \alpha(x)$, $y = \beta(x)$, and let Γ be the set of x with $\alpha(x) = \beta(x)$. Then the functional Eq. (2) has a continuous solution φ for every function $u \in C[X]$ with $u_{|\Gamma} = 0$ if and only if $H_{|K} = C[K]$. Equation (2) has approximate solutions if and only if $H_{|K}$ is dense in C[K].

We observe that these results reduce the solvability problem for these functional equations to the problem of determining those measures whose support lies in K and which annihilate H. We will return to this problem in future papers.

In the interest of clarity, we will first prove Theorem 2. Since this serves as a model for the proof of Theorem 1, we will not have to give all the details of the latter.

Suppose that $H_{|K}$ is dense in C[K]. Given any function $u \in C[X]$ with u(x) = 0 for all $x \in \Gamma$, define a function F on the compact set K by

$$F(x, y) = \begin{cases} u(x) & \text{if } (x, y) \text{ lies on the graph of } \alpha, \\ 0 & \text{if } (x, y) \text{ lies on the graph of } \beta. \end{cases}$$
(6)

Observe that the assumption that u vanishes on Γ is precisely what is needed

to be sure that F is continuous on K. Given $\epsilon > 0$, choose $f \in H$, f(x, y) = A(x) + B(y), so that $||f - F||_K < \epsilon$. Looking at this separately on the graphs of α and β , we have the inequalities

$$|A(x) + B(\alpha(x)) - u(x)| < \epsilon$$
$$|A(x) + B(\beta(x)) - 0| < \epsilon$$

for all $x \in X$. Looking at the difference of the expressions inside the absolute value signs, we have

$$|B(\alpha(x)) - B(\beta(x)) - u(x)| < 2\epsilon$$

for all $x \in X$, and $\varphi = B$ is an approximate solution of (2).

Conversely, suppose that (2) has approximate solutions for any choice of u with $u_{|F} = 0$. Given any function $F \in C[K]$, define $u \in C[X]$ by

$$u(x) = F(x, \alpha(x)) - F(x, \beta(x)).$$

Note that u(x) = 0 for all $x \in \Gamma$. Given $\epsilon > 0$, let φ be a corresponding approximate solution of (2), and set

$$A(x) = F(x, \beta(x)) - \varphi(\beta(x)),$$

$$B(y) = \varphi(y).$$

Then $A \in C[X]$, $B \in C[Y]$ and $f(x, y) = A(x) + B(y) \in H$. Examining f on K, which is $\alpha \cup \beta$, we first look at α , where we find

$$f(x, y) = f(x, \alpha(x)) = A(x) + B(\alpha(x))$$

= $F(x, \beta(x)) - \varphi(\beta(x)) + \varphi(\alpha(x))$
= $-u(x) - \varphi(\beta(x)) + \varphi(\alpha(x)) + F(x, \alpha(x))$

and thus

$$|f(x, y) - F(x, y)| = |\varphi(\alpha(x)) - \varphi(\beta(x)) - u(x)| < \epsilon.$$

Similarly, one finds that on β , f(x, y) = F(x, y). Hence $||f - F||_{K} < \epsilon$, and $H_{|K}$ is dense in C[K].

The same argument, with $\epsilon = 0$, shows that $H_{|K} = C[K]$ if and only if (2) has a solution φ for each $u \in C[X]$ with $u_{|\Gamma} = 0$.

We also note that this argument shows that (2) has a solution for a given u obeying the condition $u_{|r|} = 0$ if and only if the corresponding function F defined by (5) lies in $H_{|K}$, and (2) has approximate solutions φ if F lies in the closure of $H_{|K}$.

We now proceed with the proof of Theorem 1. Suppose that $H_{|K}$ is dense

231

in C[K], and that we are given functions u_1 , u_2 ,..., u_n obeying (4). On the set $K = \bigcup_{0}^{n} \beta_i$ define a function F by

$$F(x, y) = \begin{cases} 0 & \text{if } (x, y) \text{ lies on the graph of } \beta_0, \\ -\sum_{1}^{k} u_j(x) & \text{if } (x, y) \text{ lies on the graph of } \beta_k. \end{cases}$$
(6)

Then, it is seen at once that the relations (4) are precisely the data needed to verify that the behavior of F on the sets Γ_{ij} is such that F is continuous on K.

By hypothesis, given any $\epsilon > 0$, there are $A \in C[X]$ and $B \in C[Y]$ such that $||f - F||_K < \epsilon$, where f(x, y) = A(x) + B(y). On β_0 we then have

$$|A(x) + B(\beta_0(x)) - 0| < \epsilon.$$

On β_1 ,

$$|A(x) + B(\beta_1(x)) + u_1(x)| < \epsilon.$$

Hence

$$|B(\beta_0(x)) - B(\beta_1(x)) - u_1(x)| < 2\epsilon$$

Similarly, on β_k we have by (6),

$$\left|A(x) + B(\beta_k(x)) + \sum_{1}^{k} u_i(x)\right| < \epsilon,$$

and it follows that

$$|B(\beta_{k-1}(x)) - B(\beta_k(x)) - u_k(x)| < 2\epsilon.$$

Thus $\varphi = B$ is an approximate solution of the system (3).

Conversely, suppose that (3) has arbitrarily good approximate solutions for any choice of the functions u_i obeying restrictions (4). Given a function $F \in C[K]$, define *n* functions by

$$u_k(x) = F(x, \beta_{k-1}(x)) - F(x, \beta_k(x)).$$

Examination shows that these functions obey all the restrictions given in (4). Accordingly, given any $\epsilon > 0$, there is a function φ which solves (3) with error uniformly smaller than ϵ . Define a function $f \in H$ by f(x, y) = A(x) + B(y), where

$$A(x) = F(x, \beta_0(x)) - \varphi(\beta_0(x)),$$

$$B(y) = \varphi(y).$$

Looking at f on the set $K = \bigcup_{i=0}^{n} \beta_{i}$, we find that on β_{0} ,

$$f(x, y) = A(x) + B(\beta_0(x)) = F(x, \beta_0(x)) - \varphi(\beta_0(x)) + \varphi(\beta_0(x))$$

= F(x, y)

and on β_1 ,

$$f(x, y) = A(x) + B(\beta_1(x)) = F(x, \beta_0(x)) - \varphi(\beta_0(x)) + \varphi(\beta_1(x))$$

= $F(x, \beta_0(x)) - u_1(x) - \{\varphi(\beta_0(x)) - \varphi(\beta_1(x)) - u_1(x)\}$
= $F(x, \beta_1(x)) - \{\varphi(\beta_0(x)) - \varphi(\beta_1(x)) - u_1(x)\}.$

Thus, on β_1 ,

$$|f(x, y) - F(x, y)| \leq |\varphi(\beta_0(x)) - \varphi(\beta_1(x)) - u_1(x)| < \epsilon.$$

Likewise, a similar computation shows that on β_2 ,

$$|f(x, y) - F(x, y)| < 2\epsilon,$$

and, finally, $||f - F||_{\beta_n} < n\epsilon$. Thus $||f - F||_K < n\epsilon$ and $H_{|K}$ is dense in C[K].

We note that the same proof applies if u and φ are allowed to take values in a normed linear space E.

4. Special Cases

Let X = Y = [0, 1] so that S is the unit square. We shall use particular choices of curves to illustrate Theorems 1 and 2. As the first example, we choose $\alpha(x) = x/2$ and $\beta(x) = (1 + x)/2$, and apply Theorem 2. The set Γ is empty, and we are concerned with the solution of the functional equation

$$\varphi(\frac{1}{2}x) - \varphi(\frac{1}{2} + \frac{1}{2}x) = u(x) \tag{7}$$

for $x \in [0, 1]$ and an arbitrary function $u \in C[0, 1]$.

The general solution of (7) is easily obtained, since the equation can be used to define φ in a segmental fashion. Given any function $\theta \in C[0, 1/2]$ such that $\theta(0) - \theta(1/2) = u(0)$, set

$$\varphi(x) = \begin{cases} \theta(x) & \text{for } 0 \leq x \leq 1/2, \\ \theta(x - \frac{1}{2}) - u(2x - 1) & \text{for } 1/2 \leq x \leq 1. \end{cases}$$

Then φ satisfies (7); thus this functional equation has infinitely many solutions for any choice of u.

The set K consists of two parallel line segments given by the graphs of α

and β . According to Theorem 2, we conclude that $H_{|K} = C[K]$; moreover, we also conclude that for any $F \in C[K]$, there are infinitely many $f \in H$ such that f = F on K.

In this case, it is easy to present a complete treatment of $H_{|K}$, simpler than via (7). Given any $F \in C[K]$, choose any function $A \in C[0, 1]$ such that

$$A(1) - A(0) = F(1, 1/2) - F(0, 1/2).$$

Then, set

$$B(y) = \begin{cases} F(2y, y) - A(2y) & \text{for } 0 \leq y \leq 1/2, \\ F(2y - 1, y) - A(2y - 1) & \text{for } 1/2 \leq y \leq 1; \end{cases}$$

the function f(x, y) = A(x) + B(y) coincides with F on K. (The restriction on A assures that B is continuous at y = 1/2.)

As our second example, choose $\alpha(x) = x$ and $\beta(x) = x^2$. The corresponding functional equation is

$$\varphi(x) - \varphi(x^2) = u(x) \tag{8}$$

and is one that has been studied extensively (see [2, p. 66]). The set Γ consists of 0 and 1 so that u must obey u(0) = u(1) = 0. The following result is well known.

LEMMA 1. A necessary condition in order that (8) have a continuous solution $\varphi \in C[0, 1]$ is that each of the series $\sum_{0}^{\infty} u(x^{2^n})$ and $\sum_{1}^{\infty} u(x^{(1/2)^n})$ shall converge for each $x \in [0, 1]$.

This follows from (8) by repeatedly making either the substitution of x^2 for x, or \sqrt{x} for x, and adding the resulting equations to obtain the pair of identities

$$\varphi(x) - \varphi(x^{2^n}) = \sum_{0}^{n-1} u(x^{2^k}),$$

$$\varphi(x^{(1/2)^n}) - \varphi(x) = \sum_{1}^n u(x^{(1/2)^k}).$$
(9)

If φ is continuous at 0 and at 1, then $\lim_{n\to\infty} \varphi(x^{2^n})$ and $\lim_{n\to\infty} \varphi(x^{(1/2)^n})$ must exist for each x, and the Lemma follows.

Consider the special function $u \in C[0, 1]$ defined by

$$u(x) = \begin{cases} \frac{1}{\log \log(10/x)} & \text{for } 0 < x \leq .5, \\ \frac{c}{-\log \log(1/x)} & \text{for } .5 \leq x < 1, \end{cases}$$

234

with u(0) = u(1) = 0 and with c selected so as to force u to be continuous at x = .5. Examination shows that each of the series in Lemma 1 diverges for every x, 0 < x < 1. We conclude that the functional Eq. (8) has no continuous solution φ for this choice of u and thus, in this case, $H_{iK} \neq C[K]$.

The next result seems to be new, even for the special functional equation (8).

THEOREM 3. Let β be a continuous increasing function obeying $\beta(0) = \beta(1) = 0$ and $0 < \beta(x) < x$ for 0 < x < 1. Then, the functional equation

$$\varphi(x) - \varphi(\beta(x)) = u(x) \tag{10}$$

has arbitrarily good approximate solutions for every choice of $u \in C[0, 1]$ obeying u(0) = u(1) = 0.

Given u, let u_N be selected so that $||u_N|| = ||u||, u_N(x) = 0$ for $0 \le x \le 1/N$ and $N/(N+1) \le x \le 1$, and $||u_N - u|| \to 0$ as $N \to \infty$. Choose a positive number $\rho < 1$ and, motivated by (9), set

$$\varphi(x) = \sum_{0}^{\infty} \rho^{n} u_{N}(\beta^{n}(x)),$$

where $\beta^0(x) \equiv x, \beta^1(x) \equiv \beta(x)$ and, for $n = 2, 3, ..., \beta^n(x) = \beta(\beta^{n-1}(x))$. Note that $\varphi \in C[0, 1]$ and that, on [0, 1],

$$\varphi(x) - \varphi(\beta(x))\rho = u_N(x).$$

LEMMA 2. For any N, there is a number C depending on β but not on ρ , such that $\| \varphi \| < (1 - \rho^{c}) \| u \| (1 - \rho)^{-1}$.

Because u_N vanishes on a neighborhood of 0 and of 1, $u_N(\beta^n(x)) = 0$ when $\beta^n(x) < 1/N$ and when $\beta^n(x) > N/(N+1)$. Hence, for each x, the series (11) is really a finite sum, with n running from some index n_1 to an index n_2 . These can be taken as characterized by $\beta^{n_1}(x) \sim N/(N+1)$ and $\beta^{n_2}(x) \sim 1/N$. Thus, for any x, we have $\beta^{n_2-n_1}(N/(N+1)) \sim 1/N$. Hence, there is an integer C, determined by $\beta^C(N/(N+1)) < 1/N$, such that the series (11) has never more than C nonzero terms, no matter which $x \in [0, 1]$ is selected. For example, when $\beta(x) = x^m$, C can be taken to be $1 + [\log(n \log N)/\log m]$. Consequently, for any x.

$$| \varphi(x) | \leq (\rho^{n_1} + \dots + \rho^{n_1 + C - 1}) || u_N ||$$

 $\leq \frac{(1 - \rho^C)}{1 - \rho} || u ||.$

To complete the proof of Theorem 3, suppose $\epsilon > 0$ is given. Choose N

so that $||u_N - u|| < \epsilon$, and then choose ρ close to 1 so that $1 - \rho^c < \epsilon/||u||$. Observe that, for any x,

$$\varphi(x) - \varphi(\beta(x)) - u(x) = u_N(x) - u(x) + (\rho - 1) \varphi(\beta(x))$$

so that

$$|\varphi(x) - \varphi(\beta(x)) - u(x)| < ||u_N - u|| + (1 - \rho) ||\varphi|| < ||u_N - u|| + (1 - \rho^c) ||u|| < 2\epsilon.$$

Hence, φ is an approximate solution of (10). Note that the proof holds also for any increasing function β having a finite set Γ of fixed points.

COROLLARY 1. Let K be the subset of the unit square consisting of the curves y = x and $y = x^2$. Then $H_{|K}$ is a proper dense subspace of C[K].

We note that, in this case, there are functions $F \in C[K]$ that do not have best uniform approximations by functions in H. This seems to be contrary to one of the assertions in Cereteli [1].

A second deduction from Theorem 3 may also be of independent interest.

COROLLARY 2. Let $\mu_n = \int_0^1 t^n d\psi(t)$, n = 0, 1, ..., where ψ is of bounded variation. If $\mu_n = \mu_{pn}$ for n = 1, 2, ... and some integer p, then $\mu_1 = \mu_2 = \cdots$.

This results from the fact that the linear functional L defined by $d\psi$ will annihilate all polynomials of the form $Q(t) = P(t) - P(t^{v})$, and hence all continuous functions for which f(0) = f(1) = 0. But such a functional must be a linear combination of point masses at 0 and at 1.

Finally, we give a simple example to show that $H_{|K}$ need not be dense in C[K]. With $\alpha(x) = x$, choose $\beta(x) = 9x^3 - (27/2)x^2 + (11/2)x$. The set Γ is $\{0, 1/2, 1\}$. Thus, $H_{|K}$ would be dense in C[K] if the functional equation

$$\varphi(x) - \varphi(\beta(x)) = u(x) \tag{12}$$

has approximate solutions for every continuous function u obeying u(0) = u(1/2) = u(1) = 0. However, it is easily seen that no solution can exist if u(x) does not also obey the relation u(1/3) + u(2/3) = 0. For, putting x = 1/3 and then x = 2/3 in (12), and using the fact that $\beta(1/3) = 2/3$ and $\beta(2/3) = 1/2$, we have

$$\varphi(1/3) - \varphi(2/3) \sim u(1/3),$$

 $\varphi(2/3) - \varphi(1/3) \sim u(2/3),$

which must hold with arbitrary accuracy. Thus, in this case, the closure of H_{iK} is a proper subspace of C[K]. (This can also be seen by exhibiting a measure on K which annihilates H but not C[K].)

References

- A. S. CERETELI, The approximations of functions of two variables by functions of the form φ(x) + ψ(y) (Russian). Sakharth. S.S.R. Mecn. Akad. Moambe 44 (1966), 545-547 [MR 34, 6401].
- 2. MAREK KUCZMA, "Functional Equations," Polish Acad. Math. Mono., Vol. 46. 383 pp., Polish Sci. Publ., Warsaw, 1968.