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1. INTRODUCTION

For the past decade, I have been interested in approximation properties of
functions of several variables. The study of one special case has led to some
unexpectedly interesting results. Let X and Y be compact spaces and let
S = X X Y. As usual, C[S] denotes the space of real-valued continuous
functions on S with the uniform norm II FII = max IF(x, y)[, for (x, y) EO S.
Let H be the set of functions in C[S] which can be expressed in the form
f(x, y) = A(x) + B(y), where A EO C[X] and B EO C[Y]. It is easily seen that H
is a closed subspace of C[S]. Let K be a compact subset of Sand H 1K the set
of restrictions to K of functions f EO H. Then, HIK is a subspace of C[K].
Our central problem is the study of the relationship between HIK and C[K].

The present paper, which is the first of a series, will show that for certain
choices of K there is a close connection between the nature of HI K and the
study of a special type of functional equations. We obtain necessary and
sufficient conditions for HIK to coincide with or to be dense in C[K]. In the
special case X = Y = [0, 1], certain choices for K will show that HIK need
not be closed in C[K], and functions F EO C[K] need not have best uniform
approximations by f EO H. Some of the results dealing with functional
equations are also new and have independent interest.

2. FUNCTIONAL EQUATIONS

Let k(x), f3(x) and u(x) belong to C[Q, 1], with f3 taking values in [0, 1],
and ask for a continuous function rp EO C[O, 1] such that

rp(x) - k(x) rp(f3(x)) = u(x)
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for all x EO [0, 1]. Many papers have dealt with this classical functional
equation, mostly with severe restrictions on f3 and u. The easiest case to study
is that where II k II < 1; for then one may apply the standard n.xed point
theorem for contraction mappings. The special case k(x) = I is central to the
general problem. (A summary of the literature is to be found in Kuczma
[2, Chapters II, IV, V]. Our first results deal with generalizations of this
equation.

Let ex and f3 be continuous mappings from X into Y, Given any function
u EO C[X], we ask for a function cp EO C[Y) such that

cp(o:(x» - cp(f3(x» = u(x)

for all x E X. Let r be the set of x EO X for which ex(x) = /3(x). Clearly, (2)
cannot have a solution unless u vanishes on r. We can then ask if any
additional conditions on u are needed in order that there exists a solution
for (2). We are also interested in the existence of approximate solutions of (2);
given E > 0, is there a function cp E C[Y] such that

I cp(ex(x» - cp(f3(x» - U(x) I < E

for all x E X?
More generally, suppose that f30 , f31 ,... , ,B n are mappings from X into Y,

not necessarily one-to-one, and consider the system of simultaneous equations

cp(f3o(x» - CP(f31(X» = uJ.(x),
rp(f31(X» - ep(f32(X» = uix),

cp(f3n-l(X» - cp(f3n(x» = un(x).

(3)

For any i and j, i < j, let rij be the set of all x E X with f3;(x) = f3j(x). It is
clear that Eqs. (3) cannot admit either an exact solution e:p or arbitrarily
good approximate solutions cp unless the given functions Uk obey the condition

for all x E r k - l ,k •

However, these are not the only requirements that must be imposed on the
functions Ui . For example, if cp obeys the first two equations in (3), then it
must also satisfy

rp(f3o(x» - CP(f32(X» = u1(x) + u2(x),

so that it is necessary that ul (x) + u2(x) = 0 on the set r 02 ' In general,
(3) can have no solution cp unless

for k = 1,2,... , n, 111 = 1,2,... , n, k :(; 111.

for x E rio-I,m, (4)
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When X = Y = [0,1], we can picture the fJi as a collection of curves in
the unit square S, and the sets Tij describe their intersection pattern. If there
are multiple intersections, then the sets To are not all disjoint.

In the next section, we obtain necessary and sufficient conditions for the
system (3) to have a solution (or to have arbitrarily good approximate
solutions) for every choice of the functions Uk obeying the set ofconditions (4).
In the following section, this will be applied in the case n = 1 (one equation
and two curves) to illustrate some of the complexity of the situation.

3. THE MAIN THEOREM

Let K be the compact subset of S consisting of the graphs of the n + 1
curves (mappings) fJi .

THEOREM 1. The system of functional Eqs. (3) has a solution qJ E C[Y]
for every choice of the continuous fimctions Uk obeying conditions (4) ifand only
if HIK = C[K]; (3) admits arbitrarily good approximate solutions if and only
if HIK is dense in C[K].

Because of its interest, we also state the special case of Theorem 1 arising
from n = 1.

THEOREM 2. Let K be the subset ofS consisting of the graphs of the curves
y = ex(x) , y = fJ(x) , and let T be the set of x with ex(x) = fJ(x). Then the
functional Eq. (2) has a continuous solution qJ for every fimction II E C[X] with
llir = 0 if and only if HIK = C[K]. Equation (2) has approximate solutions if
and only if H[K is dense in C[K].

We observe that these results reduce the solvability problem for these
functional equations to the problem of determining those measures whose
support lies in K and which annihilate H. We will return to this problem in
future papers.

In the interest of clarity, we will first prove Theorem 2. Since this serves as
a model for the proof of Theorem 1, we will not have to give all the details
of the latter.

Suppose that HIK is dense in C[K]. Given any function u E C[X] with
u(x) = 0 for all x E T, define a function F on the compact set K by

F(x ,) = jU(x) if (x, y) lies on the graph of ex,
, .} 10 if (x, y) lies on the graph of fJ. (6)

Observe that the assumption that u vanishes on T is precisely what is needed
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to be sure that F is continuous on K. Given=: > 0, choose f E H,
f(x, y) = A(x) + B(y), so that II! - FilK < E. Looking at this separately
on the graphs of ex and fl, we have the inequalities

I A(x) + B(ex(x)) - u(x)! < E

I A(x) + B(fl(x)) - 0 ! < E

for all x eo X. Looking at the difference of the expressions inside the absolute
value signs, we have

I B(Cl(X)) - B(fl(x) - u(x) I < 2E

for all x eo X, and f{J = B is an approximate solution of (2).
Conversely, suppose that (2) has approximate solutions for any choice of u

with Ulr = O. Given any function F eo C[K], define u EO C[X] by

U(x) = F(x, ex(x») - F(x, flex)).

Note that u(x) = 0 for all x EO r. Given E > 0, let rp be a corresponding
approximate solution of (2), and set

A(x) = F(x, flex)) - cp(fl(x)),

B(y) = f{J(Y).

Then A eo C[X], B EO C[Y] andf(x, y) = A(x) + B(y) EO H. Examiningfon K,
which is ex u fl, we first look at iX, where we find

I(x, y) = f(x, iX(X)) = A(x) -+ B(cx(x))

= F(x, flex)) - rp(fl(x)) + cp(cx(x))

= -u(x) - rp(fl(x)) + cp(cx(x)) -+ F(x, cx(x»)

and thus

I/(x,y) -F(x,y)1 = I rp(cx(x») - rp(fl(x)) -u(x): < E.

Similarly, one finds that on fl,f(x, y) = F(x, y). Hence !If - FilK < E, and
HIK is dense in C[K].

The same argument, with E = 0, shows that H 1K = C[K] if and only if (2)
has a solution rp for each U E C[X] with lilT = O.

We also note that this argument shows that (2) has a solution for a given u
obeying the condition 1I1r = 0 if and only if the corresponding function F
defined by (5) lies in HIK' and (2) has approximate solutions rp ifFlies in the
dosure of HIK.

We now proceed with the proof of Theorem 1. Suppose that H iK is dense
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in C[K], and that we are given functions Ul , U2 , ••. , Un obeying (4). On the set
K = U: f3i define a function F by

° if (x, y) lies on the graph of 130 ,

F(x, y) = k (6)- L: uJCx) if (x, y) lies on the graph of 13k .
1

Then, it is seen at once that the relations (4) are precisely the data needed
to verify that the behavior of F on the sets ri; is such that F is continuous
on K.

By hypothesis, given any E > 0, there are A E C[X] and B E C[Y] such that
IIf - FIIK < E, wheref(x, y) = A(x) + B(y). On 130 we then have

IA(x) + B(f3o(x)) - °I < E.

On 131,

Hence

Similarly, on 13k we have by (6),

IA(x) + B(f3,,(x)) +t u;(x) I< E,
1

and it follows that

Thus r:p = B is an approximate solution of the system (3).
Conversely, suppose that (3) has arbitrarily good approximate solutions

for any choice of the functions Ui obeying restrictions (4). Given a function
FE C[K], define n functions by

Examination shows that these functions obey all the restrictions given in (4).
Accordingly, given any E > 0, there is a function r:p which solves
(3) with error uniformly smaller than E. Define a function fE H by
f(x, y) = A(x) + B(y), where

A(x) = F(x, f3o(x)) - r:p(f3o(x)),

B(y) = r:p(y).
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Looking at f on the set K = U; f3j , we find that on 130 ,

f(x, y) = A(x) + B(f3o(x») = F(x,f3o(x» - rpCf3oCx» + rpCf3o(x))

= FCx,Y)

and on 131 ,

f(x, y) = A(x) + B(f31(X» = F(x,f3o(x» - rp(f3o(x») + rp(f3lx»

= F(x, f3o(x» - u1(x) - {rpCf3o(x» - rp(P1(X» - u1Cx)}

= F(x, f31(X») - {rp(f3o(x) - rp(f3tCx» - u1(x)}.

Thus, on 131 ,

If(x, y) - F(x, y)1 ~ I rp(f3o(x» - rp(P1(X» - U1(x) \ < E.

Likewise, a similar computation shows that on ,82 ,

If(x,y) -F(x,Y)1 < 2e,

and, finally, Ilf - Flli> < n€. Thus Ilf - FIIK < nE and HIKis dense in C[K).
We note that the sa~e proof applies if u and rp are allowed to take values in

a normed linear space E.

4. SPECIAL CASES

Let X = Y = [0, 1] so that S is the unit square. We shall use particular
choices of curves to illustrate Theorems 1 and 2. As the first example, we
choose <x(x) = xf2 and f3(x) = (1 + x)f2, and apply Theorem 2. The set r
is empty, and we are concerned with the solution of the functional equation

rp(tx) - rp(t + tx) = u(x) ('7\
..... !)

for x E [0, 1] and an arbitrary function u E qo, 1].
The general solution of (7) is easily obtained, since the equation can be used

to define rp in a segmental fashion. Given any function 0 E qo, 1(2] such that
0(0) - 80(2) = u(o), set

IB(x)
rp(x) = 10(x -1) - u(2x - 1)

for 0 ~ x ~ 1/2,
for 1/2 ~ x ~ 1.

Then rp satisfies (7); thus this functional equation has infinitely many solutions
for any choice of u.

The set K consists of two parallel line segments given by the graphs of ex
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and [3. According to Theorem 2, we conclude that HIK = C[K]; moreover,
we also conclude that for any FE elK], there are infinitely many f E H such
thatf = F on K.

In this case, it is easy to present a complete treatment of HIK, simpler than
via (7). Given any FE C[K], choose any function A E C[O, 1] such that

A(I) - A(O) = F(I, 1/2) - F(O, 1/2).

Then, set

B J _ jF(2y, y) - A(2y)
()) - IF(2y - 1, y) - A(2y - I)

for °~ y ~ 1/2,
for 1/2 ~ y ~ 1;

the function/(x, y) = A(x) + B(y) coincides with F on K. (The restriction
on A assures that B is continuous at y = 1/2.)

As our second example, choose n:(x) = x and [3(x) = x2• The corre
sponding functional equation is

<p(x) - <p(x2) = u(x) (8)

and is one that has been studied extensively (see [2, p. 66]). The set r consists
of°and 1 so that u must obey u(O) = u(1) = 0. The following result is well
known.

LEMMA 1. A necessary condition in order that (8) have a continuous solution
<p E C[O, 1] is that each of the series 2:; u(x2") and 2:~ U(X(1/2l") shall converge
for each x E [0, 1].

This follows from (8) by repeatedly making either the substitution of x2

for x, or yx for x, and adding the resulting equations to obtain the pair of
identities

n-l

<p(x) - <p(x2n) = L U(X
2k

),

o
(9)

n
<p(X(lj2l") - <p(x) = L U(x(lj2l k

).

1

If <p is continuous at °and at 1, then limn-->oo <p(x2n
) and limn -->oo <p(X(1/2l')

must exist for each x, and the Lemma follows.
Consider the special function U E C[O, 1] defined by

1

u(x) = log 10g(10/x)
c

-log 10gOlx)

for °< x ~ .5,

for .5 ~ x < 1,
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with u(O) = u(l) = 0 and with c selected so as to force u to be continuous
at x = .5. Examination shows that each of the series in Lemma 1 diverges
for every x, 0 < x < 1. We conclude that the functional Eq. (8) has no
continuous solution ep for this choice of u and thus, in this case, H iK oF C[K1

The next result seems to be new, even for the special functional equation (8).

THEOREM 3. Let fl be a continuous increasing function obeying p(O) =

fl(1) = 0 and 0 < flex) < x for 0 < x < 1. Then, the functional equatioN

<p(x) - ep(fl(x» =, u(x) (lO)

has arbitrarily good approximate solutions for every choice of u E qo, 1]
obeying u(O) = u(I) = O.

Given u, let UN be selected so that II UN II = Ii U ~I, UN(X) = 0 for 0 :'( x :'( liN
and NI(N + 1) :'( x :'( 1, and II UN - U11---+ °as N ---+ 00. Choose a positive
number p < I and, motivated by (9), set

00

ep(x) = L p"uN(fl//(x»,

°
where flO(x) = x, f31(x) - flex) and, for n = 2, 3, ... , fl//(x) = fl(fln-1(x». Note
that <p E qo, 1] and that, on [0, I],

ep(x) - ep(fl(x»p = UN(X).

LEMMA 2. For any N, there is a number C depending on p but not on p,
such that II ep II < (1 - pC) II U [I (l - p)-l.

Because UN vanishes on a neighborhood of 0 and of 1, uN(fln(x» = 0
when fln(x) < liN and when fln(x) > NI(N + 1). Hence, for each x, the
series (11) is really a finite sum, with n running from some index n1 to an
index n2 • These can be taken as characterized by flnl(x) ,....., NI(N + 1) and
flnz(x) ,-"'" liN. Thus, for any x, we have flnz-nl(NI(N -I- 1» ,....., liN. Hence,
there is an integer C, determined by flC(NI(N + 1» < liN, such that the
series (11) has never more than C nonzero terms, no matter which x E [0, 1]
is selected. For example, when flex) = x m , C can be taken to be
1 + Dog(n log N)/log m]. Consequently, for any x,

I <p(x) I :'( (pn l + ." + p"I+C-I) If UN II

:'( (11- pC) I! u Ii.
-p

To complete the proof of Theorem 3, suppose E > 0 is given. Choose IV
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so that II UN - U II < E, and then choose p close to 1 so that 1 - pC < EIII U II.
Observe that, for any x,

<p(x) - <p(f3(x» - u(x) = UN(X) - u(x) + (p - 1) <p(f3(x»

so that

I <p(x) - <p(f3(x» - u(x) I < II UN - u II + (1 - p) II <p II
< II UN - u II + (1 - pC) II U II
< 2E.

Hence, <p is an approximate solution of (10). Note that the proof holds also
for any increasing function f3 having a finite set r of fixed points.

COROLLARY 1. Let K be the subset ofthe unit square consisting ofthe curves
y = x and y = x 2• Then HIK is a proper dense subspace of C[K].

We note that, in this case, there are functionsF E C[K] that do not have best
uniform approximations by functions in H. This seems to be contrary to one
of the assertions in Cereteli [1].

A second deduction from Theorem 3 may also be of independent interest.

COROLLARY 2. Let JLn = J~ tn dljJ(t), n = 0, 1,... , where ljJ is of bounded
variation. Ifp-n = P-pnfor n = 1,2,... and some integerp, then P-l = JL2 = ....

This results from the fact that the linear functional L defined by dljJ will
annihilate all polynomials of the form Q(t) = pet) - P(tP), and hence all
continuous functions for whichf(O) = f(1) = 0. But such a functional must
be a linear combination of point masses at 0 and at 1.

Finally, we give a simple example to show that HIK need not be dense in
C[K]. With cx(x) = x, choose f3(x) = 9x3 - (27/2) x2 + (1l/2)x. The set r
is {O, 1/2, 1}. Thus, H 1K would be dense in C[K] if the functional equation

<p(x) - <p(f3(x» = u(x) (12)

has approximate solutions for every continuous function U obeying
u(O) = u(1/2) = u(l) = O. However, it is easily seen that no solution can
exist if u(x) does not also obey the relation u(1/3) + u(2/3) = O. For, putting
x = Ij3 and then x = 2j3 in (12), and using the fact that f3(1/3) = 2j3 and
f3(2j3) = lj2, we have

<p(lj3) - <p(2j3) ,...., u(lj3),

<p(2j3) - <p(1j3) ,...., u(2j3),
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which must hold with arbitrary accuracy. Thus, in this case, the closure ofHii'{

is a proper subspace of C[K]. (This can also be seen by exhibiting a measure
on K which annihilates H but not C[K].)
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