On Approximation Theory and Functional Equations*

R. C. Buck
Department of Mathematics, University of Wisconsin, Madison, Wisconsin, $5370 b$

Received September 24, 1970

DEDICATED TO PROFESSOR J. L. WALSH ON THE OCCASION OF HIS 75TH BIRTHDAY

1. Introduction

For the past decade, I have been interested in approximation properties of functions of several variables. The study of one special case has led to some unexpectedly interesting results. Let X and Y be compact spaces and let $S=X \times Y$. As usual, $C[S]$ denotes the space of real-valued continuous functions on S with the uniform norm $\|F\|=\max |F(x, y)|$, for $(x, y) \in S$. Let H be the set of functions in $C[S]$ which can be expressed in the form $f(x, y)=A(x)+B(y)$, where $A \in C[X]$ and $B \in C[Y]$. It is easily seen that H is a closed subspace of $C[S]$. Let K be a compact subset of S and $H_{[K}$ the set of restrictions to K of functions $f \in H$. Then, $H_{\left.\right|_{K}}$ is a subspace of $C[K]$. Our central problem is the study of the relationship between $H_{\mid K}$ and $C[K]$.

The present paper, which is the first of a series, will show that for certain choices of K there is a close connection between the nature of $H_{i K}$ and the study of a special type of functional equations. We obtain necessary and sufficient conditions for $H_{\mid K}$ to coincide with or to be dense in $C[K]$. In the special case $X=Y=[0,1]$, certain choices for K will show that $H_{\mid K}$ need not be closed in $C[K]$, and functions $F \in C[K]$ need not have best uniform approximations by $f \in H$. Some of the results dealing with functional equations are also new and have independent interest.

2. Functional Equations

Let $k(x), \beta(x)$ and $u(x)$ belong to $C[0,1]$, with β taking values in $[0,1]$, and ask for a continuous function $\varphi \in C[0,1]$ such that

$$
\begin{equation*}
\varphi(x)-k(x) \varphi(\beta(x))=u(x) \tag{1}
\end{equation*}
$$

* Research supported by NSF grant GP-9570.
for all $x \in[0,1]$. Many papers have dealt with this classical functional equation, mostly with severe restrictions on β and u. The easiest case to study is that where $\|k\|<1$; for then one may apply the standard fixed point theorem for contraction mappings. The special case $k(x) \equiv 1$ is central to the general problem. (A summary of the literature is to be found in Kuczma [2, Chapters II, IV, V]. Our first results deal with generalizations of this equation.

Let α and β be continuous mappings from X into Y. Given any function $u \in C[X]$, we ask for a function $\varphi \in C[Y]$ such that

$$
\begin{equation*}
\varphi(\alpha(x))-\varphi(\beta(x))=u(x) \tag{2}
\end{equation*}
$$

for all $x \in X$. Let Γ be the set of $x \in X$ for which $a(x)=\beta(x)$. Clearly, (2) cannot have a solution unless u vanishes on Γ. We can then ask if any additional conditions on u are needed in order that there exists a solution for (2). We are also interested in the existence of approximate solutions of (2); given $\epsilon>0$, is there a function $\varphi \in C[Y]$ such that

$$
|\varphi(\alpha(x))-\varphi(\beta(x))-u(x)|<\epsilon
$$

for all $x \in X$?
More generally, suppose that $\beta_{0}, \beta_{1}, \ldots, \beta_{n}$ are mappings from X into Y, not necessarily one-to-one, and consider the system of simultaneous equations

$$
\begin{array}{r}
\varphi\left(\beta_{0}(x)\right)-\varphi\left(\beta_{1}(x)\right)=u_{1}(x), \\
\varphi\left(\beta_{1}(x)\right)-\varphi\left(\beta_{2}(x)\right)=u_{2}(x), \tag{3}\\
\vdots \\
\varphi\left(\beta_{n-1}(x)\right)-\varphi\left(\beta_{n}(x)\right)=u_{n}(x) .
\end{array}
$$

For any i and $j, i<j$, let $\Gamma_{i j}$ be the set of all $x \in X$ with $\beta_{i}(x)=\beta_{j}(x)$. It is clear that Eqs. (3) cannot admit either an exact solution φ or arbitrarily good approximate solutions φ unless the given functions u_{k} obey the condition

$$
u_{k}(x)=0 \quad \text { for all } \quad x \in \Gamma_{k-1, k}
$$

However, these are not the only requirements that must be imposed on the functions u_{i}. For example, if φ obeys the first two equations in (3), then it must also satisfy

$$
\varphi\left(\beta_{0}(x)\right)-\varphi\left(\beta_{2}(x)\right)=u_{1}(x)+u_{2}(x)
$$

so that it is necessary that $u_{1}(x)+u_{2}(x)=0$ on the set Γ_{02}. In general, (3) can have no solution φ unless

$$
\begin{equation*}
u_{k}(x)+u_{k+1}(x)+\cdots+u_{m}(x)=0 \quad \text { for } \quad x \in \Gamma_{k-1, m}, \tag{4}
\end{equation*}
$$

for $k=1,2, \ldots, n, m=1,2, \ldots, n, k \leqslant m$.

When $X=Y=[0,1]$, we can picture the β_{i} as a collection of curves in the unit square S, and the sets $\Gamma_{i j}$ describe their intersection pattern. If there are multiple intersections, then the sets $\Gamma_{i j}$ are not all disjoint.

In the next section, we obtain necessary and sufficient conditions for the system (3) to have a solution (or to have arbitrarily good approximate solutions) for every choice of the functions u_{k} obeying the set of conditions (4). In the following section, this will be applied in the case $n=1$ (one equation and two curves) to illustrate some of the complexity of the situation.

3. The Main Theorem

Let K be the compact subset of S consisting of the graphs of the $n+1$ curves (mappings) β_{i}.

Theorem 1. The system of functional Eqs. (3) has a solution $\varphi \in C[Y]$ for every choice of the continuous functions u_{k} obeying conditions (4) if and only if $H_{\mid K}=C[K]$; (3) admits arbitrarily good approximate solutions if and only if $H_{1 K}$ is dense in $C[K]$.

Because of its interest, we also state the special case of Theorem 1 arising from $n=1$.

Theorem 2. Let K be the subset of S consisting of the graphs of the curves $y=\alpha(x), y=\beta(x)$, and let Γ be the set of x with $\alpha(x)=\beta(x)$. Then the functional Eq. (2) has a continuous solution φ for every function $u \in C[X]$ with $u_{\mid \Gamma}=0$ if and only if $H_{\mid K}=C[K]$. Equation (2) has approximate solutions if and only if $H_{\mid K}$ is dense in $C[K]$.

We observe that these results reduce the solvability problem for these functional equations to the problem of determining those measures whose support lies in K and which annihilate H. We will return to this problem in future papers.

In the interest of clarity, we will first prove Theorem 2. Since this serves as a model for the proof of Theorem 1, we will not have to give all the details of the latter.

Suppose that $H_{\mid K}$ is dense in $C[K]$. Given any function $u \in C[X]$ with $u(x)=0$ for all $x \in \Gamma$, define a function F on the compact set K by

$$
F(x, y)= \begin{cases}u(x) & \text { if }(x, y) \text { lies on the graph of } \alpha \tag{6}\\ 0 & \text { if }(x, y) \text { lies on the graph of } \beta\end{cases}
$$

Observe that the assumption that u vanishes on T is precisely what is needed
to be sure that F is continuous on K. Given $\subseteq>0$, choose $f \in H$, $f(x, y)=A(x)+B(y)$, so that $\|f-F\|_{K}<\epsilon$. Looking at this separately on the graphs of α and β, we have the inequalities

$$
\begin{gathered}
|A(x)+B(\alpha(x))-u(x)|<\epsilon \\
|A(x)+B(\beta(x))-0|<\epsilon
\end{gathered}
$$

for all $x \in X$. Looking at the difference of the expressions inside the absolute value signs, we have

$$
|B(\alpha(x))-B(\beta(x))-u(x)|<2 \epsilon
$$

for all $x \in X$, and $\varphi=B$ is an approximate solution of (2).
Conversely, suppose that (2) has approximate solutions for any choice of u with $u_{\mid \Gamma}=0$. Given any function $F \in C[K]$, define $u \in C[X]$ by

$$
u(x)=F(x, \alpha(x))-F(x, \beta(x))
$$

Note that $u(x)=0$ for all $x \in \Gamma$. Given $\epsilon>0$, let ϕ be a corresponding approximate solution of (2), and set

$$
\begin{aligned}
& A(x)=F(x, \beta(x))-\varphi(\beta(x)) \\
& B(y)=\varphi(y)
\end{aligned}
$$

Then $A \in C[X], B \in C[Y]$ and $f(x, y)=A(x)+B(y) \in H$. Examining f on K, which is $\alpha \cup \beta$, we first look at α, where we find

$$
\begin{aligned}
f(x, y) & =f(x, \alpha(x))=A(x)+B(\alpha(x)) \\
& =F(x, \beta(x))-\varphi(\beta(x))+\varphi(\alpha(x)) \\
& =-u(x)-\varphi(\beta(x))+\varphi(\alpha(x))+F(x, \alpha(x))
\end{aligned}
$$

and thus

$$
|f(x, y)-F(x, y)|=|\varphi(\alpha(x))-\varphi(\beta(x))-u(x)|<\epsilon
$$

Similarly, one finds that on $\beta, f(x, y)=F(x, y)$. Hence $\|f-F\|_{K}<\epsilon$, and $H_{\mid K}$ is dense in $C[K]$.

The same argument, with $\epsilon=0$, shows that $H_{\mid K}=C[K]$ if and only if (2) has a solution φ for each $u \in C[X]$ with $u_{\mid \bar{I}}=0$.

We also note that this argument shows that (2) has a solution for a given u obeying the condition $u_{\mid \Gamma}=0$ if and only if the corresponding function F defined by (5) lies in $H_{\mid K}$, and (2) has approximate solutions φ if F lies in the closure of $H_{\mid K}$.

We now proceed with the proof of Theorem. 1. Suppose that $H_{\mid K}$ is dense
in $C[K]$, and that we are given functions $u_{1}, u_{2}, \ldots, u_{n}$ obeying (4). On the set $K=\bigcup_{0}^{n} \beta_{i}$ define a function F by

$$
F(x, y)= \begin{cases}0 & \text { if }(x, y) \text { lies on the graph of } \beta_{0} \tag{6}\\ -\sum_{1}^{k} u_{j}(x) & \text { if }(x, y) \text { lies on the graph of } \beta_{k}\end{cases}
$$

Then, it is seen at once that the relations (4) are precisely the data needed to verify that the behavior of F on the sets $\Gamma_{i j}$ is such that F is continuous on K.

By hypothesis, given any $\epsilon>0$, there are $A \in C[X]$ and $B \in C[Y]$ such that $\|f-F\|_{K}<\epsilon$, where $f(x, y)=A(x)+B(y)$. On β_{0} we then have

$$
\left|A(x)+B\left(\beta_{0}(x)\right)-0\right|<\epsilon
$$

On β_{1},

$$
\left|A(x)+B\left(\beta_{1}(x)\right)+u_{1}(x)\right|<\epsilon
$$

Hence

$$
\left|B\left(\beta_{0}(x)\right)-B\left(\beta_{1}(x)\right)-u_{1}(x)\right|<2 \epsilon
$$

Similarly, on β_{k} we have by (6),

$$
\left|A(x)+B\left(\beta_{k}(x)\right)+\sum_{1}^{k} u_{i}(x)\right|<\epsilon
$$

and it follows that

$$
\left|B\left(\beta_{k-1}(x)\right)-B\left(\beta_{k}(x)\right)-u_{k}(x)\right|<2 \epsilon
$$

Thus $\varphi=B$ is an approximate solution of the system (3).
Conversely, suppose that (3) has arbitrarily good approximate solutions for any choice of the functions u_{i} obeying restrictions (4). Given a function $F \in C[K]$, define n functions by

$$
u_{k}(x)=F\left(x, \beta_{k-1}(x)\right)-F\left(x, \beta_{k}(x)\right)
$$

Examination shows that these functions obey all the restrictions given in (4). Accordingly, given any $\epsilon>0$, there is a function φ which solves (3) with error uniformly smaller than ϵ. Define a function $f \in H$ by $f(x, y)=A(x)+B(y)$, where

$$
\begin{aligned}
& A(x)=F\left(x, \beta_{0}(x)\right)-\varphi\left(\beta_{0}(x)\right) \\
& B(y)=\varphi(y)
\end{aligned}
$$

Looking at f on the set $K=\bigcup_{0}^{n} \beta_{j}$, we find that on β_{0},

$$
\begin{aligned}
f(x, y) & =A(x)+B\left(\beta_{0}(x)\right)=F\left(x, \beta_{0}(x)\right)-\varphi\left(\beta_{0}(x)\right)+\varphi\left(\beta_{0}(x)\right) \\
& =F(x, y)
\end{aligned}
$$

and on β_{1},

$$
\begin{aligned}
f(x, y) & =A(x)+B\left(\beta_{1}(x)\right)=F\left(x, \beta_{0}(x)\right)-\varphi\left(\beta_{0}(x)\right)+\varphi\left(\beta_{1}(x)\right) \\
& =F\left(x, \beta_{0}(x)\right)-u_{1}(x)-\left\{\varphi\left(\beta_{0}(x)\right)-\varphi\left(\beta_{1}(x)\right)-u_{1}(x)\right\} \\
& =F\left(x, \beta_{1}(x)\right)-\left\{\varphi\left(\beta_{0}(x)\right)-\varphi\left(\beta_{1}(x)\right)-u_{1}(x)\right\} .
\end{aligned}
$$

Thus, on $\beta_{\text {I }}$,

$$
|f(x, y)-F(x, y)| \leqslant\left|\varphi\left(\beta_{0}(x)\right)-\varphi\left(\beta_{1}(x)\right)-u_{1}(x)\right|<\epsilon
$$

Likewise, a similar computation shows that on β_{2},

$$
|f(x, y)-F(x, y)|<2 \varepsilon
$$

and, finally, $\|f-F\|_{\beta_{n}}<n \epsilon$. Thus $\|f-F\|_{K}<n \epsilon$ and $H_{\mid K}$ is dense in $C[K]$.
We note that the same proof applies if u and φ are allowed to take values in a normed linear space E.

4. Spectal Cases

Let $X=Y=[0,1]$ so that S is the unit square. We shall use particular choices of curves to illustrate Theorems 1 and 2 . As the first example, we choose $\alpha(x)=x / 2$ and $\beta(x)=(1+x) / 2$, and apply Theorem 2 . The set Γ is empty, and we are concerned with the solution of the functional equation

$$
\begin{equation*}
\varphi\left(\frac{1}{2} x\right)-\varphi\left(\frac{1}{2}+\frac{1}{2} x\right)=u(x) \tag{7}
\end{equation*}
$$

for $x \in[0,1]$ and an arbitrary function $u \in C[0,1]$.
The general solution of (7) is easily obtained, since the equation can be used to define φ in a segmental fashion. Given any function $\theta \in C[0,1 / 2]$ such that $\theta(0)-\theta(1 / 2)=u(0)$, set

$$
\varphi(x)= \begin{cases}\theta(x) & \text { for } \quad 0 \leqslant x \leqslant 1 / 2 \\ \theta\left(x-\frac{1}{2}\right)-u(2 x-1) & \text { for } \quad 1 / 2 \leqslant x \leqslant 1\end{cases}
$$

Then φ satisfies (7); thus this functional equation has infinitely many solutions for any choice of u.

The set K consists of two parallel line segments given by the graphs of α
and β. According to Theorem 2 , we conclude that $H_{\mid K}=C[K]$; moreover, we also conclude that for any $F \in C[K]$, there are infinitely many $f \in H$ such that $f=F$ on K.

In this case, it is easy to present a complete treatment of $H_{\mid K}$, simpler than via (7). Given any $F \in C[K]$, choose any function $A \in C[0,1]$ such that

$$
A(1)-A(0)=F(1,1 / 2)-F(0,1 / 2)
$$

Then, set

$$
B(y)= \begin{cases}F(2 y, y)-A(2 y) & \text { for } 0 \leqslant y \leqslant 1 / 2 \\ F(2 y-1, y)-A(2 y-1) & \text { for } 1 / 2 \leqslant y \leqslant 1\end{cases}
$$

the function $f(x, y)=A(x)+B(y)$ coincides with F on K. (The restriction on A assures that B is continuous at $y=1 / 2$.)

As our second example, choose $\alpha(x)=x$ and $\beta(x)=x^{2}$. The corresponding functional equation is

$$
\begin{equation*}
\varphi(x)-\varphi\left(x^{2}\right)=u(x) \tag{8}
\end{equation*}
$$

and is one that has been studied extensively (see [2, p. 66]). The set Γ consists of 0 and 1 so that u must obey $u(0)=u(1)=0$. The following result is well known.

Lemma 1. A necessary condition in order that (8) have a continuous solution $\varphi \in C[0,1]$ is that each of the series $\sum_{0}^{\infty} u\left(x^{2^{n}}\right)$ and $\sum_{1}^{\infty} u\left(x^{(1 / 2)^{n}}\right)$ shall converge for each $x \in[0,1]$.

This follows from (8) by repeatedly making either the substitution of x^{2} for x, or $\sqrt{ } x$ for x, and adding the resulting equations to obtain the pair of identities

$$
\begin{align*}
\varphi(x)-\varphi\left(x^{2^{n}}\right) & =\sum_{0}^{n-1} u\left(x^{2^{k}}\right), \tag{9}\\
\varphi\left(x^{(1 / 2)^{n}}\right)-\varphi(x) & =\sum_{1}^{n} u\left(x^{(1 / 2)^{k}}\right) .
\end{align*}
$$

If φ is continuous at 0 and at 1 , then $\lim _{n \rightarrow \infty} \varphi\left(x^{2^{2}}\right)$ and $\lim _{n \rightarrow \infty} \varphi\left(x^{(1 / 2)^{n}}\right)$ must exist for each x, and the Lemma follows.

Consider the special function $u \in C[0,1]$ defined by

$$
u(x)= \begin{cases}\frac{1}{\log \log (10 / x)} & \text { for } \quad 0<x \leqslant .5 \\ \frac{c}{-\log \log (1 / x)} & \text { for } .5 \leqslant x<1\end{cases}
$$

with $u(0)=u(1)=0$ and with c selected so as to force u to be continuous at $x=.5$. Examination shows that each of the series in Lemma 1 diverges for every $x, 0<x<1$. We conclude that the functional Eq. (8) has no continuous solution φ for this choice of u and thus, in this case, $H_{i K} \neq C[K]$.

The next result seems to be new, even for the special functional equation (8).
Theorem 3. Let β be a continuous increasing function obeying $\beta(0)=$ $\beta(1)=0$ and $0<\beta(x)<x$ for $0<x<1$. Then, the functional equation

$$
\begin{equation*}
\varphi(x)-\varphi(\beta(x))=u(x) \tag{10}
\end{equation*}
$$

has arbitrarily good approximate solutions for every choice of $u \in C[0,1]$ obeying $u(0)=u(1)=0$.

Given u, let u_{N} be selected so that $\left\|u_{N}\right\|=\|u\|, u_{N}(x)=0$ for $0 \leqslant x \leqslant 1 / N$ and $N /(N+1) \leqslant x \leqslant 1$, and $\left\|u_{N}-u\right\| \rightarrow 0$ as $N \rightarrow \infty$. Choose a positive number $\rho<1$ and, motivated by (9), set

$$
\varphi(x)=\sum_{0}^{\infty} \rho^{n} u_{N}\left(\beta^{n}(x)\right)
$$

where $\beta^{0}(x) \equiv x, \beta^{1}(x) \equiv \beta(x)$ and, for $n=2,3, \ldots, \beta^{n}(x)=\beta\left(\beta^{n-1}(x)\right)$. Note that $\varphi \in C[0,1]$ and that, on $[0,1]$,

$$
\varphi(x)-\varphi(\beta(x)) \rho=u_{N}(x)
$$

Lemma 2. For any N, there is a number C depending on β but not on ρ, such that $\|\varphi\|<\left(1-\rho^{c}\right)\|u\|(1-\rho)^{-1}$.

Because u_{N} vanishes on a neighborhood of 0 and of $1, u_{N}\left(\beta^{n}(x)\right)=0$ when $\beta^{n}(x)<1 / N$ and when $\beta^{n}(x)>N /(N+1)$. Hence, for each x, the series (11) is really a finite sum, with n running from some index n_{1} to an index n_{2}. These can be taken as characterized by $\beta^{n_{1}}(x) \sim N /(N+1)$ and $\beta^{n_{2}}(x) \sim 1 / N$. Thus, for any x, we have $\beta^{n_{2}-n_{1}}(N /(N+1)) \sim 1 / N$. Hence, there is an integer C, determined by $\beta^{C}(N /(N+1))<1 / N$, such that the series (11) has never more than C nonzero terms, no matter which $x \in[0,1]$ is selected. For example, when $\beta(x)=x^{m}, C$ can be taken to be $1+[\log (n \log N) / \log m]$. Consequently, for any x.

$$
\begin{aligned}
|\varphi(x)| & \leqslant\left(\rho^{n_{1}}+\cdots+\rho^{n_{1}+C-1}\right)\left\|u_{N}\right\| \\
& \leqslant \frac{\left(1-\rho^{C}\right)}{1-\rho}\|u\| .
\end{aligned}
$$

To complete the proof of Theorem 3, suppose $\epsilon>0$ is given. Choose N
so that $\left\|u_{N}-u\right\|<\epsilon$, and then choose ρ close to 1 so that $1-\rho^{c}<\epsilon /\|u\|$. Observe that, for any x,

$$
\varphi(x)-\varphi(\beta(x))-u(x)=u_{N}(x)-u(x)+(\rho-1) \varphi(\beta(x))
$$

so that

$$
\begin{aligned}
|\varphi(x)-\varphi(\beta(x))-u(x)| & <\left\|u_{N}-u\right\|+(1-\rho)\|\varphi\| \\
& <\left\|u_{N}-u\right\|+\left(1-\rho^{c}\right)\|u\| \\
& <2 \epsilon
\end{aligned}
$$

Hence, φ is an approximate solution of (10). Note that the proof holds also for any increasing function β having a finite set Γ of fixed points.

Corollary 1. Let K be the subset of the unit square consisting of the curves $y=x$ and $y=x^{2}$. Then $H_{\mid K}$ is a proper dense subspace of $C[K]$.

We note that, in this case, there are functions $F \in C[K]$ that do not have best uniform approximations by functions in H. This seems to be contrary to one of the assertions in Cereteli [1].

A second deduction from Theorem 3 may also be of independent interest.
Corollary 2. Let $\mu_{n}=\int_{0}^{1} t^{n} d \psi(t), n=0,1, \ldots$, where ψ is of bounded variation. If $\mu_{n}=\mu_{\text {pn }}$ for $n=1,2, \ldots$ and some integer p, then $\mu_{1}=\mu_{2}=\cdots$.

This results from the fact that the linear functional L defined by $d \psi$ will annihilate all polynomials of the form $Q(t)=P(t)-P\left(t^{p}\right)$, and hence all continuous functions for which $f(0)=f(1)=0$. But such a functional must be a linear combination of point masses at 0 and at 1 .

Finally, we give a simple example to show that $H_{\mid K}$ need not be dense in $C[K]$. With $\alpha(x)=x$, choose $\beta(x)=9 x^{3}-(27 / 2) x^{2}+(11 / 2) x$. The set Γ is $\{0,1 / 2,1\}$. Thus, $H_{\mid K}$ would be dense in $C[K]$ if the functional equation

$$
\begin{equation*}
\varphi(x)-\varphi(\beta(x))=u(x) \tag{12}
\end{equation*}
$$

has approximate solutions for every continuous function u obeying $u(0)=u(1 / 2)=u(1)=0$. However, it is easily seen that no solution can exist if $u(x)$ does not also obey the relation $u(1 / 3)+u(2 / 3)=0$. For, putting $x=1 / 3$ and then $x=2 / 3$ in (12), and using the fact that $\beta(1 / 3)=2 / 3$ and $\beta(2 / 3)=1 / 2$, we have

$$
\begin{aligned}
& \varphi(1 / 3)-\varphi(2 / 3) \sim u(1 / 3) \\
& \varphi(2 / 3)-\varphi(1 / 3) \sim u(2 / 3)
\end{aligned}
$$

which must hold with arbitrary accuracy. Thus, in this case, the closure of $H_{1 s}$ is a proper subspace of $C[K]$. (This can also be seen by exhibiting a neasure on K which annihilates H but not $C[K]$.)

References

1. A. S. Ceretel, The approximations of functions of two variables by functions of the form $\varphi(x)+\psi(y)$ (Russian). Sakharth. S.S.R. Mecn. Akad. Moambe 44 (1966), 545--547 [MR 34, 6401].
2. Marek Kuczma, "Functional Equations," Polish Acad. Math. Mono., Vol. 46. 383 pp., Polish Sci. Publ., Warsaw, 1968.
